Fractional differential equations with maxima on time scale via Picard operators
نویسندگان
چکیده
In this paper, we prove a result of existence and uniqueness solutions for the following class problem initial value differential equations with maxima Caputo?s fractional order on time scales: c??a u(?) = ?(?, u(?), max ??[a,?] u(?)), ? J := [a, b]T, 0 < 1, u(a) ?, We used techniques Picard weakly operators to obtain some data dependency parameters results.
منابع مشابه
Solving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملApproximate controllability of fractional differential equations via resolvent operators
where D is the Caputo fractional derivative of order α with < α < , A :D(A)⊂ X → X is the infinitesimal generator of a resolvent Sα(t), t ≥ , B : U → X is a bounded linear operator, u ∈ L([,b],U), X and U are two real Hilbert spaces, J–α t h denotes the – α order fractional integral of h ∈ L([,b],X). The controllability problem has attracted a lot of mathematicians and engineers’ att...
متن کاملNonlocal Problems for Fractional Differential Equations via Resolvent Operators
We discuss the continuity of analytic resolvent in the uniform operator topology and then obtain the compactness of Cauchy operator by means of the analytic resolvent method. Based on this result, we derive the existence of mild solutions for nonlocal fractional differential equations when the nonlocal item is assumed to be Lipschitz continuous and neither Lipschitz nor compact, respectively. A...
متن کاملUlam-Hyers stability of dynamic equations on time scales via Picard operators
In this paper we study the Ulam-Hyers stability of some linear and nonlinear dynamic equations and integral equations on time scales. We use both direct and operatorial methods and we propose a unified approach to Ulam-Hyers stability based on the theory of Picard operators (see [29] and[34]). Our results extend some recent results from [25],[26], [8], [14], [13] to dynamic equations and are mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2023
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2302393k